Search Results

Documents authored by Paták, Pavel


Document
Shellability is NP-Complete

Authors: Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
We prove that for every d >= 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d >= 2 and k >= 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d >= 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes.

Cite as

Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner. Shellability is NP-Complete. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 41:1-41:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{goaoc_et_al:LIPIcs.SoCG.2018.41,
  author =	{Goaoc, Xavier and Pat\'{a}k, Pavel and Pat\'{a}kov\'{a}, Zuzana and Tancer, Martin and Wagner, Uli},
  title =	{{Shellability is NP-Complete}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{41:1--41:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.41},
  URN =		{urn:nbn:de:0030-drops-87542},
  doi =		{10.4230/LIPIcs.SoCG.2018.41},
  annote =	{Keywords: Shellability, simplicial complexes, NP-completeness, collapsibility}
}
Document
On Generalized Heawood Inequalities for Manifolds: A Van Kampen-Flores-type Nonembeddability Result

Authors: Xavier Goaoc, Isaac Mabillard, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner

Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)


Abstract
The fact that the complete graph K_5 does not embed in the plane has been generalized in two independent directions. On the one hand, the solution of the classical Heawood problem for graphs on surfaces established that the complete graph K_n embeds in a closed surface M if and only if (n-3)(n-4) is at most 6b_1(M), where b_1(M) is the first Z_2-Betti number of M. On the other hand, Van Kampen and Flores proved that the k-skeleton of the n-dimensional simplex (the higher-dimensional analogue of K_{n+1}) embeds in R^{2k} if and only if n is less or equal to 2k+2. Two decades ago, Kuhnel conjectured that the k-skeleton of the n-simplex embeds in a compact, (k-1)-connected 2k-manifold with kth Z_2-Betti number b_k only if the following generalized Heawood inequality holds: binom{n-k-1}{k+1} is at most binom{2k+1}{k+1} b_k. This is a common generalization of the case of graphs on surfaces as well as the Van Kampen--Flores theorem. In the spirit of Kuhnel's conjecture, we prove that if the k-skeleton of the n-simplex embeds in a 2k-manifold with kth Z_2-Betti number b_k, then n is at most 2b_k binom{2k+2}{k} + 2k + 5. This bound is weaker than the generalized Heawood inequality, but does not require the assumption that M is (k-1)-connected. Our proof uses a result of Volovikov about maps that satisfy a certain homological triviality condition.

Cite as

Xavier Goaoc, Isaac Mabillard, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner. On Generalized Heawood Inequalities for Manifolds: A Van Kampen-Flores-type Nonembeddability Result. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 476-490, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{goaoc_et_al:LIPIcs.SOCG.2015.476,
  author =	{Goaoc, Xavier and Mabillard, Isaac and Pat\'{a}k, Pavel and Pat\'{a}kov\'{a}, Zuzana and Tancer, Martin and Wagner, Uli},
  title =	{{On Generalized Heawood Inequalities for Manifolds: A Van Kampen-Flores-type Nonembeddability Result}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{476--490},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Arge, Lars and Pach, J\'{a}nos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.476},
  URN =		{urn:nbn:de:0030-drops-51256},
  doi =		{10.4230/LIPIcs.SOCG.2015.476},
  annote =	{Keywords: Heawood Inequality, Embeddings, Van Kampen–Flores, Manifolds}
}
Document
Bounding Helly Numbers via Betti Numbers

Authors: Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner

Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)


Abstract
We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers b and d there exists an integer h(b,d) such that the following holds. If F is a finite family of subsets of R^d such that the ith reduced Betti number (with Z_2 coefficients in singular homology) of the intersection of any proper subfamily G of F is at most b for every non-negative integer i less or equal to (d-1)/2, then F has Helly number at most h(b,d). These topological conditions are sharp: not controlling any of these first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex K, some well-behaved chain map from C_*(K) to C_*(R^d). Both techniques are of independent interest.

Cite as

Xavier Goaoc, Pavel Paták, Zuzana Patáková, Martin Tancer, and Uli Wagner. Bounding Helly Numbers via Betti Numbers. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 507-521, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{goaoc_et_al:LIPIcs.SOCG.2015.507,
  author =	{Goaoc, Xavier and Pat\'{a}k, Pavel and Pat\'{a}kov\'{a}, Zuzana and Tancer, Martin and Wagner, Uli},
  title =	{{Bounding Helly Numbers via Betti Numbers}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{507--521},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Arge, Lars and Pach, J\'{a}nos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.507},
  URN =		{urn:nbn:de:0030-drops-51297},
  doi =		{10.4230/LIPIcs.SOCG.2015.507},
  annote =	{Keywords: Helly-type theorem, Ramsey’s theorem, Embedding of simplicial complexes, Homological almost-embedding, Betti numbers}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail